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Abstract-A physical model is formulated for gradient zone erosion in thermohaline systems near 
equilibrium. The model includes the effects at the gradient zone boundaries of temperature modulation, 
caused by mildly turbulent thermals in adjacent convective zones. The equations that govern convective 
motion in a double-diffusive horizontal slab are solved for boundary conditions that incorporate these 
modulations. The result predicts microconvection disturbances within the gradient zone, with an amplitude 
that decays exponentially away from the boundaries. The expected thickness of observable disturbance is 
of the order of 1 cm, which agrees with experimental observation. Examining the solution for stability of 
the boundary yields, for the first time, a model of erosion behavior that agrees with an empirical correlation 

for boundary equilibrium. 

INTRODUCTION 

HEAT and mass transfer associated with thermohaline 
convection is important in a wide range of phenomena 
[ 11, including development of saline lakes, melting of 
icebergs, mixing between ocean layers, freezing and 
melting of alloys, evolution of stellar interiors, storage 
and transport of liquid natural gas, and dispersal of 
sea-discharged effluent. In recent years, there has been 
growing interest in the use of salt gradient solar ponds 
for providing space heat, process heat, and power 
generation. A the~ohaline double~iffusive system 
such as a solar pond usually consists of three zones. 
The prominent feature is the gradient zone, in which 
both temperature and salinity increase downward. 
On the top and bottom of the gradient zone are 
convective zones of almost homogeneous salinity and 
temperature. Maintai~ng the stability of the salt 
gradient is extremely important for the viable opera- 
tion of salt gradient solar ponds. Stability within the 
gradient zone is well understood, both experimentally 
[2] and theoretically [3], and is unlikely to pose 
a problem in most practical situations. However, 
experience at many solar ponds and in laboratory 
tanks indicates that erosion of the gradient zone at 
the boundaries is a common occurrence that tends to 
shrink the thickness of the gradient zone to a value 
significantly smaller than that required for thermal 
optimization [4]. A typical range of heat flux through 

t Current address: General Electric Co., Combustion and 
Heat Transfer Technology, Mail Zone K64, 1 Neumann 
Drive, Evendale, OH 45215, U.S.A. 

the bottom of the solar pond gradient zone is of the 
order of 5-50W m-*, although it may be as high as 

400Wm-2 at the top. 
To date no fundamental understanding exists for 

the erosion phenomenon, although many models 
describe some aspects of the erosion behavior. The 
best description is given by the Nielsen equilibrium 
criterion [4,5], an empirical relation that describes 
conditions for growth and shrinkage in NaCl thermo- 
haline systems. The criterion relates the temperature 
gradient and the salt gradient at the gradient zone 
boundary in the absence of external disturbances 
according to 

dT/dy = A(dS/dy)‘-6 (1) 

where A = 5 x 10m3 Km5.4kg-1.b. When dT/dy is 
larger than the right-hand side of equation (l), the 
gradient zone erodes. When dT/dy is less than the 
right-hand side, the gradient zone grows into the 
convective zone. 

Past efforts to understand the erosion behavior 
have used many empirical correlations and at best 
give an incomplete picture of the behavior. Meyer [6] 
proposed a one-dimensional model based on an 
empirical correlation between salt and heat flux for 
thin diffusive interfaces [7]. In this model thermal 
and salinity boundary layers diffuse outward from 
the diffusive core of the gradient zone at different rates 
until the thermal boundary layer becomes unstable. At 
this point the model assumes that both boundary 
layers are fully mixed into the convective zone at 
breakdown. Bergman et al. [S] developed a one- 
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NOMENCLATURE 

empirical constant 

CK m5.4 kg- 1.6 1 
stability constant, 

vk&l(ga) CK m31 
stability constant 
stability constant 
temperature modulation 

CW 
proportionality constants 
empirical constant 
[9.74 m - l/2 w-114 1 
empirical constant 
lower convective zone 
thickness [m] 
gradient zone thickness 

Cm1 
energy in individual 
thermal burst [J] 
acceleration of gravity 
[m se21 
heat flux [Wmw2] 
thermal conductivity 
[Wm-‘K-l] 
modulation wave number 

Cm-‘1 
solutal diffusivity [m2 s- ‘1 
thermal diffusivity [m2 s- ‘1 
critical length for erosion 

Cm1 
thermal diffusion length 

Cm1 
critical length ratio, Lcpl” 
Nusselt number for lower 
convective zone, HD/(KhT) 
solution parameter, 

(k2gSWo/dyX1 - MvW’3 

Cm-*1 
Prandtl number 
Rayleigh number for lower 
convective zone, 
gaD36T/(vk,) 
critical Rayleigh number 
for erosion, 

gaLz(d T/dY)/(vkT) 
solutal Rayleigh number 
for gradient zone, 

- gbd4(dSo/dy)/b’k,) 
thermal Rayleigh number 
for gradient zone, 

-gad4(dTo/dY)/(vkT) 
critical Rayleigh number 
for thermal boundary layer, 
gad36T/(vk,) 
density stability ratio for 
gradient zone, Rs/RT 
salinity [kg m- 3] 
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si 
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AT 

Greek symbols 
a 
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ST 
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)‘i 
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Subscripts 
0 zeroth-order solution 
1 first-order solution. 

Superscripts 
n empirical coefficient 

nl stability criterion coefficient, 
(6n + 2)/(9n + 9) 

n2 stability criterion coefficient, 
- (3n + 1)/(6n + 6). 

salinity difference across gradient 
zone [kgmm3] 
vertical dependence of salinity 
salinity coefficient, i = 1, 2, 3, 4 
temperature [K] 
temperature difference across 
gradient zone [K] 
vertical dependence of temperature 
temperature coefficient, i = 1, 2, 3, 4 
time between thermal bursts [s] 
critical time of thermal, traveling in 
lower convective zone [s] 
time of travel for thermal, t/t, 
vertical velocity of thermal [m s- ‘1 
critical velocity of thermal [m s- ‘1 
vertical velocity of thermal, u/u, 
horizontal spatial coordinate [m] 
vertical spatial coordinate positive 
upwards [m]. 

thermal expansion coefficient, 

--U/PM~P/W CK- ‘I 
salinity expansion coefficient, 

WPM~P/W Cm3 kg- ‘I 
diffusive stability ratio, r/R, 
temperature difference between 
thermal burst and lower convective 
zone, ao/6T 
thermal boundary layer thickness 

Cm1 
temperature difference across 
thermal boundary layer [K] 
dimensionless temperature 
modulation, a,/AT 
eigenvalue, i = 1, 2, 3, 4 [m-l] 
kinematic viscosity [m2 s- ‘1 
density [kg m-‘1 
ratio of diffusivities, k, Jk, 
vertical dependence of stream 
function 
stream function coefficient, i = 1, 2, 
3, 4 
stream function [m2 s- ‘1. 
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dimensional multi-layer model by applying species 
and energy balances to control volumes about the 
bottom convective zone and the gradient zone. Gradi- 
ent zone erosion was represented by an entrainment 
velocity correlated to the friction velocity associated 
with turbulence in the convective zone and a bulk 
Richardson number based on a density jump at the 
zone boundary. This model was later developed into 
a differential model that incorporated a k-6 model of 
turbulent entrainment [9]. Atkinson and Harleman 
[lo] have also suggested a one-dimensional erosion 
model based on a correlation of entrainment of 
turbulent kinetic energy. 

Newell [ll] characterized the dynamics of thin 
gradient zones according to the density stability ratio 
R,. Witte and Newell [12] used a thermal burst 
stability model as the basis for erosion/growth rate 
predictions. In this case diffusion at the gradient zone 
boundary is the governing physical mechanism, and 
the influence of fluid behavior in the convective zone 
is ignored. 

A number of laboratory experiments have used 
shadowgraph [ 13,141, Mach-Zehnder interferometer 
[lS], and color dye flow visualization [16], as well as 
salinity and temperature measurements [1 1,17,18-j, 
to elucidate some of the details of fluid motion 
during the erosion process. Fluid flow in the bottom 
convective zone is characterized by mildly turbulent 
convection, consisting of thermals rising from the 
heated bottom and descending from the gradient zone 
boundary. The thermals themselves are randomly 
driven laminar flows that break off from a thermal 
boundary layer, with each individual thermal persist- 
ing for many minutes [15,17-J. With a bottom heating 
rate from 40-90 W m-‘, the l-2 cm diameter thermals 
[17] have a velocity of the order of l-2 mm s-l 
[16], a horizontal spacing of 3-6cm [16], and a 
temperature difference with the background of O.l- 
0.2K [17]. When a rising thermal impinges on the 
zone boundary, it may cause a local deflection of 
1 mm or more [14,15]. 

Seen by shadowgraph [13,14], a boundary layer 
of 5530mm thickness separates the diffusive core of 
the gradient zone from the adjacent convective zone. 
At a given horizontal location in a system near 
equilibrium, the temperature boundary often extends 
into the convective zone past the salinity boundary 
by about 1 cm [ 11,17,18]. While the salinity boundary 
remains relatively fixed in time, the apparent vertical 
position of the temperature boundary will experience 
fluctuations of the order of 1 cm with a period of the 
order of minutes [17]. At a fixed position near the 
average boundary position, temperature fluctuations 
of about 0.2K are observed, whereas at a fixed 
position several centimeters into the gradient zone, 
temperature fluctuations are less than 0.001 K [ 173. 

The one-dimensional models [6, 8-121 often give 
reasonable results under conditions where the erosion 
rate is rapid but do less well under conditions closer 

to equilibrium. Only one model [12] has tried to 
predict growth of the gradient zone. No model has 
been able to predict the equilibrium criterion of 
equation (1). No model has been able to explain 
the thickness of the boundary layer or explain the 
observed temperature fluctuations. Accordingly, in 
the present study we have formulated a model that is 
capable of predicting the thickness of the boundary 
layer, the behavior of the temperature fluctuations, 
and the conditions for which equilibrium against 
erosion or growth exist, in good agreement with 
experimental observations. The present work uses 
thermal conditions that result from the fluid motions 
in the convective zone as boundary conditions for 
deriving two-dimensional flow in the gradient zone. 

GRADIENT ZONE MODEL 

This paper studies the erosion problem from an 
analytical perspective, using the Navier-Stokes equa- 
tions and stability theory as a basis. The analysis 
assumes that convective thermals in the adjoining 
convective zone produce a spatially varying temper- 
ature distribution along the gradient zone boundary 
that is constant for a period of time that is long 
compared with the time scale for motion within the 
gradient zone. The salinity at the boundary is assumed 
constant and the boundary is dynamically free. The 
model assumes that both the temperature and salinity 
boundaries are at the same vertical coordinate, greatly 
simplifying the analysis. While this assumption con- 
flicts somewhat with observation [ll, 17,183, the 
simplification is warranted because the goal here is 
to investigate the effect of the temperature modula- 
tions. A previous analysis of this type has examined 
the effect of temperature boundary modulations on 
one-component thermal systems [19]. In this paper 
we discuss the effects of temperature modulation at 
the lower boundary only. The generalization to the 
case with modulations at both boundaries is straight- 
forward [20], and for the most part, modulation at 
one boundary does not affect fluid flow near the other 
boundary. 

As shown in Fig. 1, a horizontal fluid slab is 
bounded by two stress-free boundaries at y = 0 and 
d. The salinity and temperature at both boundaries 
are constant in time with 

s = 0, T= 0, aty=d 

S = AS, T= AT+ a,sinkx, aty=O 

where 

E = a,/AT<< 1. 

We assume that the fluid is incompressible, the 
Boussinesq approximation is valid, the thermo- 
physical properties are constant, density increases 
linearly with salinity and decreases linearly with 
temperature, and the Soret and Dufour effects can 
be ignored. With gravity acting in the negative y- 
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FIG. 1. Schematic of the~ohaline system. 

direction, for a two-dimensional convection, the 
steady-state conservation equations are 

k ~27LaY)f%!%!? 
T - ay ax ax aY 

(2) 

(3) 

To make the equations compatible we nondimension- 
alize the variables according to 

x* = xJd, y* = yJd, T’ = T/AT, S* = S/AS, 

‘I’* = Yjk,, k* = kd, p* = pd2 

where the starred variables are non~mensional. For 
brevity the asterisk is omitted in the analysis that 
follows. The non-dimensionalized boundary condi- 
tions are 

S = 0, T = 0, y = 0, a2yjay2 = 0, at y = 1 

S = 1, T= 1 + ssinkx, 

Y = 0, azyjay2 = 0, at y = 0. 

Writing the variables as an expansion in E 

(S, T, Y) = 2 tJItS,> T,, YA (5) 
a=0 

the equations to zeroth order in E yield the solution 
with no temperature modulation 

Sob, Y) = 1 - Y, T&Y) = 1 - Y, 

Y,(x, Y) = 0. (6) 

The equations to first order in E are 

rv2sl = ay’,jax (7) 

VT, = ay’,/ax (8) 

~74~ 1 + its as,/ax - R~ all/ax = 0. (9) 

Note that k,, not k,, appears in the denominator in 
the definition of R,. The boundary conditions for 
equations (7)-(g) are 

St =O,T, =O, Yl = o,a2y~/ayz = o,aty = 1 

S1 = 0, T, = sin kx, Y, = 0, a2Y Jay2 = 0, at y = 0. 

We assume solutions of the form 

S,(x, y) = s(y) sin kx (W 

T,(x, y) = t(y) sin kx (11) 

Y,(x, Yl = CMY) cos kx 112) 

where 

s(Y) = i ‘i 
sinhA(1 - y) 

&h 1, 
i=l f 

f(Y) = i li 
sinh Ad1 - y) 

i=l sinh Ai 

sinh ;li( 1 - y) 
sinh& . 

(13) 

(14) 

(1-v 

The solution for the eigenvalues is 

where 

II, = k, 1, = (p + k2)“2, 

1, = [p exp (i 2x/3) + k2] 1/Z, 

1, = [pexp(i4rr/3) + k’]l/’ (16) 

P = Ck2W - Y)/YI”~ (17) 

and the square root is evaluated so that 1, and A4 
are complex conjugates. For typical parameter values 
of interest, k2 cc p, and the real parts of 1, and 1, are 
approximately half the value of AZ. The solution for 
the coefficients is 

1 1 
s1 = Rdl s2 = E3 = s4 = - 3Rdl _ rf (18) 

1 
rt=--_ r2 = 23 = t, = - 3fl y rf (19) 
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CONVECTIVE ZONE MODEL 

In order to determine k and ao, we need to specify 
the properties of the thermals and the convective 
motion in the lower convective zone. The depth of 
the convective zone may be 1Ocm or more for 
laboratory experiments and may be l.Om or more in 
a solar pond. The bottom of the convective zone is 
heated uniformly and develops a thermal boundary 
layer from which the thermals originate. Heat transfer 
in the convective zone is given by the correlation 

Nu=cRa” (21) 

where n is often taken as l/3, but experimental results 
for large Rayleigh numbers (Ra > 105) have varied 
from n = 0.278 to 0.33 [21-241. Using equation (21) 
and the definitions of Nu and Ra, we derive 

ST= Bij+/(“+r). (22) 

Taking n = l/3 and c = 0.076 [24], for I) = lOcm, 
Ra=5.4x106 for H=lOWm-*, and Ra= 
1.5 x 10’ for H = 40 W m-*. These Rayleigh numbers 
correspond to turbulent convection. In the solar pond 
at D = l.Om, the Rayleigh numbers are higher by a 
factor of 1000, however the solar pond is not totally 
heated from below. The heat input to the solar pond 
is derived from solar radiation absorbed mostly on 
the bottom, but partly within the lower convective 
zone. The absorption within the water causes a partial 
thermal stratification, which will tend to slow the rise 
of the thermals and make the convection correspond 
more with the laboratory experiments. 

The turbulent convection regime can be described 
by the thermal burst model of Howard [ZS], which 
gives good agreement with many features of the 
thermals that have been observed experimentally [26]. 
In the thermal burst model the thermal boundary 
layer at the bottom of the convective zone starts from 
an initially isothermal fluid at the mean temperature 
of the convective zone and develops by diffusion until 
the Rayleigh number defined over the boundary layer 
reaches Rd. At this point a segment of the boundary 
layer breaks off as a thermal burst and rises by 
buoyancy force, with fluid from above the boundary 
layer taking its place to repeat the cycle. Observations 
[26] indicate that the thermals originate at locations 
spaced uniformly along the bottom. Once established, 
the locations last for long periods of time with bursts 
repeatedly rising from the same location. Successive 
thermals may meander in their path through the 
convective zone and impinge the gradient zone at 
different locations. 

The horizontal wavelength of the disturbance 
within the boundary layer is proportional to 6 [24], 
and thus the energy in each thermal burst is given by 

Eb = B,6%T. (23) 

From the definition of R,, @6T is a constant, and 

therefore the energy in each thermal burst is constant, 
independent of the heat flux. The heat flux is given 

by 
H = Ebk2/t,,. (241 

The time tb is proportional to the diffusion time [26), 
which is proportional to 6*. We relate the thickness 
6 to H by equation (22) and the definition of Rd and 
substitute the result into equation (24) to obtain 

k = B3#3*+1)/(6n+fd 
(25) 

For n = l/3, k is proportional to H1j4. 
The evolution of the thermal burst in its passage 

through the convective zone has been analyzed by 
Escudier and Maxworthy [27]. Applying their anal- 
ysis to the convective zone size and heat flux range 
considered in this study, one can show that the 
acceleration phase of the thermal occupies a small 
fraction of the total distance traveled, and that the 
behavior of the thermal may be described by the long 
time limit. In this limit the temperature and velocity 
of the thermal are described by (setting the impulse 
parameter to 0.25) [27] 

& = 0.6 t_- 3/2 f26) 

tj = 056r- ‘/*, (27) 

By ignoring the distance traveled in the acceleration 
phase, we derive the value for tfrom 

D= udt 
s 

(28) 
0 

and because ti,t, is proportional to 6 [27], we obtain 

i= B,D*/6*. (29) 

Substituting equation (29) in equation (26), we obtain 

a, = B+S36T/D3. (30) 

Because S36T is constant, u. is constant, independent 
of H. 

DISCUSSION 

Using the theoretical results of the previous sec- 
tions, we examine the temperature and salinity distri- 
butions and the fluid flow in the gradient zone for 
conditions typical of solar ponds and some of the 
laboratory experiments. The thermophysical proper- 
ties are those for an NaCl solution of S = 106 kg m- 3 
(10% by weight) and T = 50°C: v = 6.2 x lo-’ m2 
s-‘, k, = 2.6 x 10-9m2s-1, kf = 1.6 x 10-7m2s-1, 
a = 4.6 x 10-4K-‘, 6 = 6.2 x 10-4m3 kg-‘, Pr = 
4.0, K = 0.63 W m- ’ K- r. From Kamal and Nielsen 
[17] we assume k = 24.5m-i at H =40Wme2 
and a, = 0.2K, independent of H. We also assume 
II = l/3 in equations (22) and (25). The heat flux 



1032 J. R. HULL and J. M. MEHTA 

d = 1.0 m 

Ii - 10 w/m2 
d - 1.0 m 

0.00 0.92 0.84 0.35 0.85 1.00 

Temperature 
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FIG. 3. Calculated stream function distribution for several 
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is related to the temperature gradient in the gradient 
zone according to 

H = -K dT,/dy. (31) 

One effect of the temperature modulation is the 
creation of a small mean flow in what otherwise 
would be a quiescent fluid. We designate this flow as 
microconvection to distinguish it from the large-scale 
motions occurring in the convective zone. Distribu- 
tions of the stream function $(y) are shown in Figs. 2 
and 3, at a heat flux of 10 and 40 W m- ‘, respectively, 
for several R, at a gradient zone thickness of d = 1 .O m. 
The amplitude of the stream function dies off exponen- 
tially away from the boundary with an attenuation 
length 2p- . 1/Z In the first microconvection cell at the 
bottom of the gradient zone, the flow is upwards 
above the center of the impinging thermal (sin kx = 1). 
This is expected as the increase in temperature at the 
boundary at this location gives the adjacent gradient 
zone fluid positive buoyancy. Because of the hori- 
zontal variation in heating at the zone boundary, the 
microconvection should commence shortly after the 
thermal arrives to set up the temperature boundary. 

The magnitude of the velocity is larger and the 
penetration into the gradient zone greater for smaller 
values of both H and R,. When the calculations are 
performed at d = 0.1 m, the values for the stream 
function are essentially identical for a given H and 
R, when plotted against the dimensioned y-coordin- 
ate. This shows that the convective motion is depend- 
ent only on the salinity and temperature gradients 
and lends support to the earlier statement that modu- 
lations at one boundary do not affect the flow near 
the other boundary. As indicated in Figs. 2 and 3, the 
microconvection exists only in the bottom l-2cm of 
the gradient zone. The actual velocities are relatively 
small, with the larger velocities occurring at the 
lower heat fluxes. At H = 10 W mm2 and R, = 2, the 
maximum horizontal velocity is 4.0 x 10-5ms-1, 
and the maximum vertical velocity is 1.5 x 10V6 
ms-‘. 

The steady-state temperature distribution T(y) = 
To + &t(y) for several heat fluxes is shown in Fig. 4. 
An infinite heat flux is equivalent to the base state 
of no modulation. The temperature distribution is 
essentially independent of R,. The function t(y) is 
mainly governed by the t, term, in which the ampli- 
tude dies off exponentially with attenuation length 
l/k, characteristic of diffusion. The other three terms 
have the much shorter decay length of the order 
of p-‘/2, which is a characteristic length of the 
microconvection. However, compared to the diffusive 
term, the amplitude for the three convective terms is 
reduced by the factor y, which is of the order of 0.01 
or less, and these terms play a negligible role in the 
temperature distribution. 

The steady-state temperature distribution thus 
arises mainly from thermal diffusion from the boun- 
dary. If the position of the thermals at the gradient 
zone boundary were indeed constant in time, one 
would expect to be able to detect a horizontal 
temperature variation well into the diffusive core of 
the gradient zone. Such variations have not been 
detected [17]. The thermal diffusion length is given 

by 

& = (2k,t)“2 (32) 
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FIG. 5. Calculated salinity distribution for several R, at 
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and because of the randomly driven nature of the 
thermals, one does not expect to see a temperature 
variation into the gradient zone much beyond this 
length. For a coherence period for the thermals of 
t = 1000s [26], I., = 1.8 cm. Thus one would not 
expect to see temperature fluctuations much beyond 
the region of microconvection, in agreement with 
observation [ 173. 

The salinity distribution S(y) = So + &s(y) for the 
heat fluxes 10 and 40 W mm2 are shown in Figs. 5 
and 6, respectively, for several values of R,. An infinite 
R, is equivalent to the base state of no modulation. 
Near the boundary, the solution for s(y) needs a 
second-order correction for low H and R, (e.g. 
H = 10 W rnm2, R, = 2), but this parameter region is 
not in the area where boundary equilibrium is 
attained, and we ignore the correction in further 
discussion. 

Given the results of the previous sections, the base 
state temperature and salinity profiles in the gradient 
zone can be used to predict the stability of the fluid 
at the gradient zone boundary, i.e. to derive a relation 
that corresponds to the Nielsen equilibrium criterion. 
As indicated in Figs. 5 and 6, in the bottom of 
the gradient zone immediately above an impinging 
thermal, the salinity gradient becomes very weak, and 
in some cases disappears completely over a height of 
several millimeters. We use this observation as a basis 
for formulating a simple model of gradient zone 
erosion. We assume a negligible salinity gradient over 
some critical length L, at the bottom of the gradient 
zone, which defines the vertical height of a potential 
erosion cell. When erosion occurs, the temperature 
gradient and L, have become sufficiently large so that 
the thermal Rayleigh number defined over L, is larger 
than some critical value R,. At this point instability 
and convection will occur, and we assume that the 
convecting fluid eventually mixes with the lower 
convective zone. The effect of the erosive convection 
is to transport colder fluid from the top of the 
convection cell to the gradient zone boundary. This 
colder fluid has the same salinity as the convective 
zone and forms a descending thermal. The net effect 
is the entrainment of gradient zone fluid into the 
lower convective zone. 

As was the case for temperature, the sr diffusion Because the velocity of the microconvection is so 
term in s(y) decays with length l/k, while the other small, we assume that stability theory of quiescent 
three convective terms decay with length of the order fluids applies here. It is not clear what value should 
p-‘12. Unlike temperature, however, all the salinity be used for R,. There is convection occurring on both 
coefficients are approximately the same magnitude, sides of the potential erosion cell, which suggests 
and there is a significant salinity variation from the constant temperature boundaries and R, = 657. On 
base state within the lowest microconvection cell. the other hand, the upper boundary is dominated by 

The salinity gradient becomes very weak above the 
impinging thermal. At this location the salinity gradi- 
ent decreases with both decreasing H and R,. Phys- 
ically, salt from near the boundary is convected 
upward by the microconvection. At the same time, 
lower salinity solution is convected downward in the 
lowest cell at the horizontal location between the 
thermals, forming a stronger salinity gradient in these 
locations. Because the solutal diffusivity is small, these 
salinity distributions are likely to persist after a 
thermal changes location. 

The above discussion indicates that non-linear 
salinity and density distributions are expected to occur 
within the region of microconvection. Temperature 
fluctuations within the gradient zone are also expected 
to be confined mainly within this microconvection 
region. Thus, a key prediction of the theory is the 
depth of the microdisturbances within the gradient 
zone at the zone boundary. For conditions typical of 
a solar pond, the vertical convection wavelength is of 
the order of 1 cm. This predicted depth appears to 
agree with experimental observations [14,16-181. 

BOUNDARY EROSION 
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the initial temperature gradient, which suggests a 
constant heat flux boundary for which R, = 385 [28]. 
There is also some uncertainty regarding the proper 
choice for L,. We assume that L, is related to the 
microconvection wavelength according to 

L, = L,/p2. (33) 

The region of weak salinity gradient is within the 
lowest cell of the microconvection, and we thus expect 
L, < 2r1/3”‘. The horizontal wavelength of the erosive 
convection is of the same order as L, [28], which is 
well within the l/k width of the modulation. 

While the Soret effect is usually important in 
determining convective instability at these length 
scales [29], it is not likely to be important in this 
problem. In a two-component system heated from 
below, a major influence of the Soret effect is to 
change the salinity distribution, which in our case 
manifests itself in a change in the base state value for 

Rs 
Combining equation (33) with the definition of R,, 

the required temperature gradient to cause erosion is 
given by 

dT/dy = A,p’/Lf. (34) 

The temperature gradient across L, is equal to the 
original gradient plus an additional gradient caused 
by the temperature profile developing by diffusion 
caused by the presence of the thermal. Erosion may 
occur only after the thermal diffusion length equals 
L,, thus the temperature gradient is given by 

dT/dy = dT,/dy + a,lL,. (35) 

For equation (35) to be valid, it is necessary that the 
thermal diffusion time approximately equal or exceed 
the time it takes to transport salt a vertical distance 
L, by the microconvection in the first cell. This result 
holds for the parameter range of interest. We use 
equations (25), (31), (33), and (34) in equation (35) to 
obtain the condition for marginal stability 

A2(dS,ldy)2’3 = (dT,/dy)“I 

+ A,(dS,ldy)1’6(dT,/dy)“2 (36) 

where 

n, = (3n + 7)/(9n + 9) (37) 

n, = -(3n + 1)/(6n + 6) (38) 

A2 = y1/3kT~e~:/3~(6n+2)/(9n+9) 

x /32/3g-1/3a-l~~2/3L;4 (39) 

A3 = aO~~/3g1/6~1/6~130+l)/(18n+18) 

xv 
-1/6~~1/6~;1 

WI 

B, = (24.5)(40)“‘. (41) 

For a given dT,/dy, equation (36) is readily solved by 
iteration for dSo/dy. 

Lines of marginal stability for several theories of 
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FIG. 7. Temperature gradient as a function of salinity 
gradient for lines of marginal stability, comparing present 

theory with Nielsen criterion and linear stability theory. 

thermohaline systems are shown in Fig. 7 over a range 
of H = 6-400 W m-’ for thermophysical properties 
equivalent to T = 50°C S = 106 kg rnw3, and n = l/3. 
Predicted instability occurs for parameter values 
above the marginal lines. The classical line of marginal 
stability theory, given by 

dT,/dy = C(Pr + 7YW + WMbWdy) (42) 

for large RT (d > 1Ocm) applies to a vertical segment 
anywhere within the gradient zone [2,3]. The other 
three lines apply only at the gradient zone boundary 
and indicate that boundary erosion will occur for 
conditions where the gradient zone interior is very 
stable (R, = 3-12). The solution to equation (36) is 
shown in Fig. 7 for R, = 385 and 657. For these two 
lines the value of Ll has been varied to yield the best 
fit to the Nielsen criterion of equation (1). The best 
fit values for L, are L, = 3.18 for R, = 657, and 
L, = 2.77 for R, = 385. These values yield 88 and 
76% of the lower cell thickness, respectively, which is 
in the expected range. When n is varied between 0.28 
and 0.34, there is no significant difference in L,, 

goodness of fit, or position of the two lines. As seen 
in Fig. 7, there is good agreement between the present 
theory and the Nielsen criterion at most of the 
heat fluxes (H > 20 W m-‘). The largest percentage 
discrepancy occurs at the lowest H. This is the region 
where uncertainty in dT,/dy for the Nielsen criterion 
is largest because the temperature difference across a 
typical experimental gradient zone is then small. 

The erosive convection could never develop if 
the characteristic time for the microconvection and 
development of the enhanced temperature gradient 
in the gradient zone were longer than the time between 
thermal bursts. Because L, is generally less than 6, 
and the characteristic times are those of thermal 
diffusion, this is not the case. 

CONCLUSIONS 

We have formulated a physical model of gr,adient 
zone erosion in thermohaline systems near equili- 
brium. Regularly spaced thermals in the adjacent 
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convective zone cause temperature modulation at the 
gradient zone boundary. The temperature modulation 
drives microconvection cells in the lower portion of 
the gradient zone. Erosion occurs when the salinity 
gradient in the lowest microconvection cell above an 
impinging thermal becomes too weak to support the 
temperature gradient. The conditions for marginal 
stability of the erosion process are given by equation 

(36). 
The theoretical predictions for thickness of the 

microconvection and the temperature distribution 
within the gradient zone agree well with experimental 
observation. The theoretical prediction for equili- 
brium conditions governing erosion and growth of 
the gradient zone is in good agreement with a long 
existing empirical correlation, equation (I), for this 
behavior. To our knowledge this is the first time that 
any theory has been capable of predicting these 
equilibrium conditions. 

The agreement between the present theory and the 
correlation of equation (1) is somewhat remarkable 
in view of the simplifications made in the theory. The 
theory does not incorporate spatial indentations of 
the boundary caused by the momentum of the ther- 
mal. The effect of these indentations is expected to 
become more important at lower heat flux values, 
because the density gradient then provides a weaker 
restoring force while the buoyancy of each thermal is 
mostly independent of heat flux. The theory also does 
not incorporate diffusion of the gradient zone into 
the convective zone nor the observation that the 
temperature boundary of the gradient zone has a 
slightly different vertical coordinate than the salinity 
boundary. The theory of erosion is very simplistic, 
assuming the microconvection velocity does not affect 
stability, ignoring details of the temperature and 
salinity distributions, and also making no attempt to 
describe the fluid motion after erosive instability sets 
in. These effects must be incorporated into any 
complete description of gradient zone erosion. 
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MODELE PHYSIQUE DE L’EROSION DE LA ZONE GRADIENT DANS LES SYSTEMES 
THERMOHALINES 

R&sum&-On formule un modkle physique pour I’Crosion de la zone gradient dans les systt?mes ther- 
mohalines proches de 1’Cquilibre. Le modtle considbe les effets, aux frontibres de la zone de gradient, de 
la modulation de la temptrature causCe par la turbulence lente dans les zones adjacentes convectives. Les 
iquations qui gouvernent le mouvement dans une couche horizontale doublement diffusive sont risolues 
pour des conditions aux limites qui incorporent ces modulations. Le rksultat prbdit des perturbations de 
microconvection dans la zone de gradient, avec une amplitude qui diminue exponentiellement en s’Cloignant 
des frontitres. L’epaisseur calculte de la perturbation observable est de l’ordre de 1 cm, ce qui s’accorde 
avec l’observation des exgriences. L’examen de la solution de la stabilitt de la frontitre fournit, pour la 
premiere fois, un modele du comportement de 1’6rosion qui justifie une formule empirique pour l’kquilibre 

de la frontibre. 

EIN PHYSIKALISCHES MODELL DES ABBAUS DER GRADIENTENZONE IN 
SALZLdSUNGEN 

Zusammenfassung-Ein physikalisches Model1 zur Beschreibung des Abbaus der Gradientenzone in Salz- 
lasungen nahe dem Gleichgewicht wurde aufgestellt. Das Model1 beinhaltet den Einflul3 von Tem- 
peraturschwankungen am Rand der Gradientenzone auf Grund von meDig turbulenten Kon- 
vektionsstriimungen in angrenzenden Bereichen. Die Gleichungen, die die Konvektionsstriimungen in 
einem waagerechten. stabfermigen Volumen mit Temperatur- und Konzentrationsunterschieden bestim- 
men, werden fiir Randbedingungen gel&, die diese Temperaturschwankungen beinhalten. Aus der Liisung 
ergeben sich Stijrungen durch Mikrokonvektion in der Gradientenzone. deren Amplitude exponentiell mit 
dem Abstand von den Randbereichen abnimmt. Die Dicke der Schicht, in der sich die Starungen beobachtcn 
lassen. betrPgt etwa I cm, was mit tatsachlichen Beobachtungen iibereinstimmt. Die Untersuchung der 
Stabilititsbedingung fiir den Randbereich liefert zum ersten Mal ein Model1 fiir den AbbauprozeB in der 
Schichtung. dessen Ergebnisse mit denen einer empirischen Gleichung fiir das Gleichgewicht im Rand- 

bereich iibereinstimmt. 

aM3MqECKAII MOAEJIb PA3MbIBAHMII l-PAAMEHTHOR 30HbI B CMCTEMAX C 
TEPMOCOflEHOCTblG 

hiOTllUlln-C~OpMynHpOBaHa ~HNi'leCKall MODeJIb pa3MbIBaHHSi rpaLVieHTHOti 30HbI B CMCTeMLiX C 

TepMOCOneHOCTblO B~~H~H~CO~~~BO~OCOCTO~HHS~. B MOllenH y'ITeH0 BnWRHWe TeMnepaTypHblX xone6a- 
HUti y I'paHfiUrpaflHeHTHOti 30HbI,BbI3ElaHHbIXCna60Typ6yneHTHblM~ BOCXOLIILUHMW nOTOKaMll BCOCCLl- 

HHX KOHBeKTHBHbIX 30HaX. YpaBHeH,,K,OnHCblBaloU,He KOHBeKUHlO B rOpH30HTanbHOii npllMOyrO.ZbHOti 

arClKCC6eHapHOiinH~~y3HCii pcZZllaWTCn”pH ~paHH'lHbIXyCnOBW%X,yWTblBalOUIWX KOne6aHWI. nOny- 

'leHHb,e pe3ynbTaTb,npeI,CKa3blBalOT MWKpOKOHBeKTHBHble B03MYlWHHR B rpalElCHTHOti 30HC. i’fX aMn- 

nsTyna 3aTyxaeT no 3KcnoHewHanbHoMy 3aKoHyc ynaneHseM OT rpaHw. IlpennonaraeMan TonuniHa 
Ha6nIOnaeMbIX B03MyWeHHji IlOpSInKa 1 CM, 'IT0 COOTBeTCTByCT OnbITHbIM PaHHbIM. AHane3 yCTOiiW- 

BOCTH rpamiu n0380nHn snepabre nonyw-rb Monenb pa3Mb~BakiH8, cornacytolllytocn c 3MneperecKw4 

COOTHOUlCHHCM11n1 yCTOi+lHBOii TpaHHUbI. 


